HW 2 SOLUTIONS

Problem 1

HF Question 3, pg.11.

For each part we state the number of DOF's and briefly decribe them.

- a) 1-the angle describing the rotation of the disk.
- b) 3-normally a rigid body has six degrees of freedom but fixing a point on the body removes 3 of them (corresponding to the three coordinates needed to describe the position of the fixed point).
 - c) 2-the ground, or any surface, is 2-dimensional.
- d) 5-two point particles have 6 total degrees of freedom but imposing that they keep a constant distance from each other provides one constraint.
 - f) 18-6 for each rigid body.

Problem 2

HF Problem 6, pg.28

- a) Adding a constant to the Lagrangian clearly doesn't change the equations of motion since the constant will drop out when we take $\frac{\partial L}{\partial q}$ and $\frac{\partial L}{\partial \dot{q}}$. Multiplying by a constant will just result in a multiplication of the E-L equations by that constant, which can then be canceled out.
- b)The Euler-Lagrange equations will be unchanged under the addition of a term $\frac{dF}{dt}$ if and only if

$$\frac{d}{dt}\frac{\partial(\frac{dF}{dt})}{\partial \dot{q}_k} = \frac{\partial(\frac{dF}{dt})}{\partial q_k} \tag{1}$$

To verify (??), first note that $\frac{dF}{dt} = \frac{\partial F}{\partial q_k} \dot{q}_k + \frac{\partial F}{\partial t}$ (summation over repeated indices is implied), so

$$\frac{d}{dt}\frac{\partial(\frac{dF}{dt})}{\partial \dot{q}_k} = \frac{d}{dt}\left[\frac{\partial}{\partial \dot{q}_k}\left(\frac{\partial F}{\partial q_j}\dot{q}_j + \frac{\partial F}{\partial t}\right)\right]$$
(2)

$$= \frac{d}{dt} \frac{\partial F}{\partial q_k} \tag{3}$$

$$= \frac{\partial^2 F}{\partial q_k \partial q_i} \dot{q}_j + \frac{\partial^2 F}{\partial q_k \partial t} \tag{4}$$

while

$$\frac{\partial}{\partial q_k} \frac{dF}{dt} = \frac{\partial}{\partial q_k} \left(\frac{\partial F}{\partial q_k} \dot{q}_k + \frac{\partial F}{\partial t} \right) \tag{5}$$

$$= \frac{\partial^2 F}{\partial q_k \partial q_j} \dot{q}_j + \frac{\partial^2 F}{\partial q_k \partial t} \tag{6}$$

so we have the exact same expression for both sides of (??) and we're done.

Problem 3

HF Problem 12, pg. 30

We have a free particle, which by definition means V=0 so we only have a kinetic term $T = \frac{1}{2}m(\dot{x^2} + \dot{y^2})$ in our lagrangian. Using $x = r\cos\theta$ and $y = rsin\theta$ we have

$$\dot{x} = \dot{r}\cos\theta - r\dot{\theta}\sin\theta \tag{7}$$

$$\dot{y} = \dot{r}\sin\theta + r\dot{\theta}\cos\theta \tag{8}$$

so we find

$$T = \frac{1}{2}m(\dot{r^2} + r^2\dot{\theta^2}) \tag{9}$$

and so taking derivatives yields

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{r}} = m\ddot{r} \tag{10}$$

$$\frac{\dot{\partial}T}{\partial r} = mr\dot{\theta^2} \tag{11}$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{r}} = m\ddot{r} \tag{10}$$

$$\frac{\partial T}{\partial r} = mr\dot{\theta}^{2} \tag{11}$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\theta}} = 2mr\dot{\theta}\dot{r} + mr^{2}\ddot{\theta} \tag{12}$$

$$\frac{\partial T}{\partial \theta} = 0. ag{13}$$

Now, using Hand and Finch's "golden rule" $\mathcal{F}_k \equiv \mathbf{F} \cdot \frac{\partial \mathbf{r}}{\partial q_k} = \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_k} - \frac{\partial T}{\partial q_k}$ (where \mathbf{r} is the 2-dimensional Euclidean position vector of our particle) and the facts that $\frac{\partial \mathbf{r}}{\partial r} = \hat{\mathbf{e}_r}$ and $\frac{\partial \mathbf{r}}{\partial \theta} = r\hat{\mathbf{e}_\theta}$, we have

$$\mathbf{a_r} = \frac{1}{m} \mathbf{F} \cdot \hat{\mathbf{e}}_r = \frac{1}{m} \mathcal{F}_r = \ddot{r} - r\dot{\theta}^2$$
 (14)

$$\mathbf{a}_{\theta} = \frac{1}{m} \mathbf{F} \cdot \hat{\mathbf{e}}_{\theta} = \frac{1}{mr} \mathcal{F}_r = 2\dot{r}\dot{\theta} + r^2\ddot{\theta}$$
 (15)

Problem 4

HF Problem 22, pg. 34

Taking (X, θ) as our generalized coordinates where X is defined in the problem and θ is the angle that the pendulum makes with the vertical, we have the following expressions for the Euclidean x, y coordinates of the box and plane in terms of (X, θ) :

$$x_b = X \tag{16}$$

$$y_b = constant (17)$$

$$x_n = X + l\sin\theta \tag{18}$$

$$y_p = constant + l(1 - cos\theta) \tag{19}$$

(20)

so taking time derivatives yields

$$x_b = \dot{X} \tag{21}$$

$$y_b = 0 (22)$$

$$x_p = \dot{X} + l\dot{\theta}cos\theta \tag{23}$$

$$y_p = l\dot{\theta}\sin\theta. \tag{24}$$

(25)

Plugging in the above expressions into T and setting the gravitational potential to be 0 when the pendulum is hanging straight down, we have

$$L = \frac{1}{2}M\dot{X}^{2} + \frac{1}{2}m(\dot{X}^{2} + 2l\dot{X}\dot{\theta}cos\theta + l^{2}\dot{\theta}^{2}) - mgl(1 - cos\theta).$$
 (26)

Turning the crank then yields two (coupled) EOM's for X and θ respectively:

$$(M+m)\ddot{X} + ml\ddot{\theta}\cos\theta - ml\dot{\theta}^{2}\sin\theta = 0 (27)$$

$$\ddot{X}lcos\theta + l^2\ddot{\theta} = -glsin\theta. \tag{28}$$

Problem 5

HF Problem 24, pg.34

We only need compute T, since $p_{\theta} \equiv \frac{\partial L}{\partial \dot{\theta}}$ and V doesn't depend on $\dot{\theta}$. Since we're dealing with a rigid body, $T = \frac{1}{2}I\omega^2$ where ω is the angular velocity and I is the moment of inertia about the axis of rotation. Clearly $\omega = \dot{\theta}$, and we have

$$I = \int_0^{l-d} (m/l)x^2 dx + \int_0^d (m/l)x^2 dx$$
 (29)

$$= (m/3l)[(l-d)^3 + d^3] (30)$$

although we will not use this expression for I explicitly in our answer. Thus $T=\frac{1}{2}I\dot{\theta}^2$ so

$$p_{\theta} = I\dot{\theta} = I\omega \tag{31}$$

the angular momentum!